Does Quantization Improve Inference Speed? It Depends
Quantization is often cited as a technique for reducing model size and accelerating deep learning. However, past literature suggests that the effect of quantization on latency varies significantly across different settings, in some cases even increasing inference time rather than reducing it. To address this discrepancy, we conduct a series of systematic experiments on the Chameleon testbed to investigate the impact of three key variables on the effect of post-training quantization: the machine learning framework, the compute hardware, and the model itself. Our experiments demonstrate that each of these has a substantial impact on the overall effect of the inference time of a quantized model.
Launching this artifact will open it within Chameleon’s shared Jupyter experiment environment, which is accessible to all Chameleon users with an active allocation.
Download ArchiveDownload an archive containing the files of this artifact.
Download with git
Clone the git repository for this artifact, and checkout the version's commit
git clone https://github.com/AhmedFarrukh/QuantizationExperiments.git
# cd into the created directory
git checkout 71a90f1d97ccf276f40e52164da2132899af7756
Submit feedback through GitHub issues